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Preface

These notes provide a comprehensive coverage of the material presented in the
Real-Time Kernels and Systems course taught by Prof. Tullio Vardanega at
the University of Padua. They offer a detailed exploration of the theoretical
foundations and practical aspects of real-time systems, covering topics from
basic scheduling algorithms to advanced topics like multicore scheduling and
mixed-criticality systems.

The notes are organized following the structure of the course, with each
chapter focusing on a specific topic. The material includes formal definitions,
theorems with proofs where appropriate, illustrative examples, and detailed
explanations of the underlying concepts to provide a deep understanding of
real-time systems theory and practice.
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Chapter 1

Introduction to Real-Time
Systems

1.1 Definition and Fundamental Concepts

A real-time system is one where correctness depends not only on the logical
results of computation but also on the time at which these results are
produced. These systems must satisfy explicit (finite) constraints on the
timing of events to be considered correct.

1.1.1 Classes of Real-Time Systems

Real-time systems are classified according to the consequences of missing
deadlines:

• Hard real-time systems: Missing a deadline is considered a system
failure and can lead to catastrophic consequences. Examples include
aircraft flight control systems, automotive braking systems, and nuclear
power plant control systems.

• Soft real-time systems: Missing a deadline diminishes the system’s
quality of service but does not constitute a system failure. Examples
include multimedia streaming and non-critical monitoring systems.

• Firm real-time systems: Missing a deadline renders the result
useless, but does not cause system failure. Examples include video
frame processing where a late frame is discarded.

The boundary between these classifications is not always clear-cut and
many real systems include components with different timing requirements.
For instance, a single automotive system might include hard real-time braking
control, firm real-time display updates, and soft real-time climate control.

1
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1.1.2 Essential Properties of Real-Time Systems

• Timeliness: Results must be delivered within specified time con-
straints.

• Predictability: The system behavior must be deterministic and
analyzable, allowing for verification of timing constraints.

• Efficiency: The system must effectively use available resources to
meet timing constraints.

• Robustness: The system must handle exceptional conditions without
catastrophic consequences.

• Fault Tolerance: The system must continue to operate, possibly in a
degraded mode, despite failures.

• Reactiveness: The system must respond to external events promptly
and consistently.

1.2 Real-Time System Architecture

1.2.1 Hardware Architecture

Real-time systems are built on hardware platforms that include:

• Processors: From simple microcontrollers to complex multicore sys-
tems. Real-time processors often have predictable timing behavior,
avoiding features like speculative execution that can introduce timing
unpredictability.

• Memory: RAM, ROM, flash memory, etc. Memory access times must
be predictable for real-time performance.

• I/O Subsystems: Sensors, actuators, and communication interfaces.
These often include mechanisms to support predictable timing, such as
dedicated DMA channels and interrupt priorities.

• Specialized Hardware: Timers, watchdogs, and hardware accelera-
tors that support time-critical operations.

• Inter-processor Communication: In distributed systems, com-
munication infrastructure (buses, networks) with predictable timing
characteristics.
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1.2.2 Software Architecture

The software structure of a real-time system typically consists of:

• Real-Time Operating System (RTOS): Provides services for task
management, scheduling, synchronization, and communication with
predictable timing behavior.

• Application Software: Implements the specific functionality of the
system.

• Middleware: Provides higher-level abstractions and services, often
for distributed real-time systems.

• Device Drivers: Interface with hardware components, implementing
device-specific operations with timing guarantees.

1.2.3 Resource Model

Resources in a real-time system can be categorized as:

• Active resources: Processors that execute tasks (e.g., CPU cores).

• Passive resources: Resources that tasks may need during execution
(e.g., data structures, I/O devices, shared memory).

The appropriate management of both active and passive resources is
crucial for the predictable execution of real-time tasks. Resource sharing
protocols are essential to ensure predictable behavior, especially in preemptive
systems.

1.3 Real-Time Workload Model

1.3.1 Tasks and Jobs

In real-time systems, the workload is typically modeled as a set of tasks:

• Task (τi): A sequential program that executes periodically or in
response to events. A task is characterized by its timing parameters
and resource requirements.

• Job (Ji,j): A single execution instance of a task. The j-th job of task
τi is denoted as Ji,j .
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1.3.2 Task Characteristics

Tasks in real-time systems are characterized by:

• Release time (ri): The time at which a task becomes ready for
execution.

• Computation time (Ci): The time required to complete the task’s
execution without interruption. For analysis purposes, this is often the
Worst-Case Execution Time (WCET).

• Deadline (Di): The time by which the task must complete its execu-
tion, relative to its release time.

• Period (Ti): For periodic tasks, the time interval between consecutive
releases.

• Priority (Pi): The importance of the task relative to others (used in
priority-based scheduling).

• Response time (Ri): The time between a task’s release and its
completion.

• Utilization (Ui): The fraction of processor time required by the task,
given by Ui = Ci/Ti for periodic tasks.

1.3.3 Task Classification

Tasks can be classified based on their activation patterns:

• Periodic: Tasks that are released at regular intervals. A periodic task
τi is characterized by (Ci, Ti, Di) where Ti is the period.

• Sporadic: Tasks that are released irregularly but with a minimum
inter-arrival time between consecutive releases. A sporadic task τi

is characterized by (Ci, Ti, Di) where Ti is the minimum inter-arrival
time.

• Aperiodic: Tasks that are released at irregular intervals with no
minimum inter-arrival time guarantee. These are typically handled
through special mechanisms such as servers.

1.3.4 Task Constraints

Several types of deadlines are considered in real-time scheduling:

• Implicit deadlines: The deadline equals the period (Di = Ti).
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• Constrained deadlines: The deadline is less than or equal to the
period (Di ≤ Ti).

• Arbitrary deadlines: No restriction on the relationship between the
deadline and the period (Di can be less than, equal to, or greater than
Ti).

Tasks may also have dependencies:

• Independent tasks: Tasks that do not interact with each other.

• Dependent tasks: Tasks with precedence constraints (one task must
complete before another can start) or resource sharing requirements.

1.4 Real-Time Scheduling

1.4.1 The Scheduling Problem

The real-time scheduling problem involves determining when and how to
execute tasks to meet their timing constraints, given the system’s resources
and the tasks’ characteristics. A schedule specifies the allocation of resources
to tasks over time.

1.4.2 Scheduling Taxonomy

Scheduling algorithms can be classified along several dimensions:

• Static vs. Dynamic:

– Static: Scheduling decisions are made offline at design time,
resulting in a fixed schedule.

– Dynamic: Scheduling decisions are made online during system
execution, based on the current state.

• Preemptive vs. Non-preemptive:

– Preemptive: The currently executing task can be interrupted
by a higher-priority task.

– Non-preemptive: Once a task starts execution, it runs to com-
pletion.

• Priority-driven vs. Time-driven:

– Priority-driven: Scheduling is based on task priorities.
– Time-driven: Scheduling is based on predefined time slots.

• Online vs. Offline:
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– Online: Scheduling decisions are made without knowledge of
future task arrivals.

– Offline: The complete task set is known in advance.

• Optimal vs. Heuristic:

– Optimal: Guaranteed to find a feasible schedule if one exists.
– Heuristic: Aims to find a good, but not necessarily optimal,

solution.

1.4.3 Feasibility and Schedulability

• Feasible task set: A task set for which there exists at least one
schedule that meets all deadlines.

• Schedulable task set: A task set that can be scheduled by a specific
scheduling algorithm without missing deadlines.

• Optimal scheduling algorithm: An algorithm that can schedule
any feasible task set.

• Schedulability test: A method to determine whether a given task
set is schedulable under a specific scheduling algorithm.

– Exact test: A test that gives a necessary and sufficient condition
for schedulability.

– Sufficient test: A test that guarantees schedulability if passed,
but may reject some schedulable task sets.

– Necessary test: A test that guarantees unschedulability if failed,
but may accept some unschedulable task sets.

1.5 Real-Time Analysis Techniques

1.5.1 Response Time Analysis

Response Time Analysis (RTA) is a technique to determine the worst-case
response time of tasks in a system, which is the time from when a task
is released until it completes execution. For a task τi under fixed-priority
scheduling:

Ri = Ci + Ii (1.1)

where Ci is the worst-case execution time of τi and Ii is the interference
from higher-priority tasks:
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Ii =
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (1.2)

where hp(i) is the set of tasks with higher priority than τi.
The equation for Ri is solved iteratively:

Rn+1
i = Ci +

∑
j∈hp(i)

⌈
Rn

i

Tj

⌉
Cj (1.3)

Starting with R0
i = Ci, the iteration continues until either:

• Rn+1
i = Rn

i (a fixed point is reached), or

• Rn+1
i > Di (the deadline is exceeded)

1.5.2 Utilization-Based Analysis

Utilization-based analysis examines the processor utilization as a test for
schedulability. For a task set with n tasks:

U =
n∑

i=1

Ci

Ti
(1.4)

For Earliest Deadline First (EDF) scheduling with implicit deadlines, the
schedulability condition is:

U ≤ 1 (1.5)

For Rate Monotonic Scheduling (RMS) with implicit deadlines, the
schedulability condition is:

U ≤ n · (21/n − 1) (1.6)

As n → ∞, this bound approaches ln 2 ≈ 0.693.

1.5.3 Worst-Case Execution Time Analysis

Worst-Case Execution Time (WCET) analysis determines the maximum
time a task can take to execute on a given hardware platform. The WCET
must consider:

• All possible execution paths through the program.

• Hardware effects such as caching, pipelining, and branch prediction.

• Input data dependencies that affect execution time.

WCET analysis approaches include:
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• Static analysis: Analyzing the program structure without execution.

• Measurement-based analysis: Measuring execution times of pro-
gram segments.

• Hybrid approaches: Combining static analysis and measurements.

1.5.4 Demand Bound Function

The demand bound function (dbf) for a task set represents the maximum
cumulative execution time demanded by all tasks with deadlines in an interval
of length t:

dbf(t) =
n∑

i=1

⌊
t − Di

Ti

⌋
+ 1 · Ci (1.7)

For EDF, the schedulability condition is:

∀t > 0 : dbf(t) ≤ t (1.8)



Chapter 2

Scheduling Basics

2.1 Clock-Driven Scheduling

2.1.1 Principles of Clock-Driven Scheduling

Clock-driven (time-driven) scheduling makes scheduling decisions at fixed
time instants determined by a clock:

• Scheduling decisions are made at design time and activated at fixed
time instants during execution via clock interrupts.

• The scheduler dispatches the job due in the current time interval and
then suspends itself until the next scheduled time.

• Jobs must complete within their assigned time intervals.

• All scheduling parameters must be known in advance.

• The schedule, computed offline, is static and fixed.

Clock-driven scheduling is essentially a form of static, non-preemptive
scheduling where the execution sequence is determined completely in advance.

2.1.2 Cyclic Executive Model

A cyclic executive is a specific implementation of clock-driven scheduling:

• Time is divided into fixed-size frames called minor cycles.

• Each minor cycle contains a sequence of jobs to be executed.

• A complete sequence of minor cycles forms a major cycle that repeats
periodically.

• The major cycle’s length is typically the hyperperiod of the tasks (the
least common multiple of all task periods).

9
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For a cyclic executive to be feasible, several constraints must be satisfied:

1. Constraint 1: Every job must complete within a single frame.

f ≥ max
i=1,...,n

(Ci) (2.1)

where f is the frame size and Ci is the worst-case execution time of
task τi.

2. Constraint 2: The frame size must be an integer divisor of the
hyperperiod.

H = N · f where N ∈ N (2.2)

where H is the hyperperiod.

3. Constraint 3: There must be one full frame between a job’s release
time and its deadline.

2f − gcd(pi, f) ≤ Di for every task τi (2.3)

where pi is the period of task τi, Di is its deadline, and gcd is the
greatest common divisor.

2.1.3 Cyclic Executive Construction

The construction of a cyclic executive schedule involves three main steps:

1. Determine the frame size f that satisfies all constraints.

2. Break down (slice) jobs that are too large to fit within a single frame.

3. Assign jobs and slices to minor cycles, ensuring that:

• All timing constraints are met.

• The total execution time in each frame does not exceed the frame
size.

• Precedence constraints between slices are respected.

The schedule is typically represented as a table specifying which job or
slice to execute at each minor cycle.
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2.1.4 Advantages and Disadvantages

Advantages:

• Simple design and implementation.

• Predictable behavior with minimal runtime overhead.

• No need for complex task synchronization mechanisms.

• Straightforward to verify timing correctness.

Disadvantages:

• Inflexible — difficult to modify the schedule.

• Construction of the schedule is an NP-hard problem.

• Limited support for sporadic and aperiodic tasks.

• Inefficient use of CPU time when tasks’ execution times vary.

• Tasks must be sliced if their execution times exceed the frame size.

• Less robust to changes in task parameters.

2.1.5 Design Issues in Cyclic Executives

Several design issues arise in cyclic executives:

• Slack Stealing: Allocating unused CPU time to aperiodic jobs. This
can be achieved by processing aperiodic jobs at the beginning of each
minor cycle, up to a pre-computed maximum.

• Overrun Handling: When a job executes past its due time, several
strategies are possible:

– Halt the job at the end of its allocated time.

– Allow it to complete its critical actions before halting.

– Delay the start of the next minor cycle (if timing constraints
permit).

• Mode Changes: When the system needs to reconfigure its functions
and workload parameters, transitions between operation modes must
be managed to ensure timing correctness.
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2.2 Round-Robin Scheduling

2.2.1 Principles of Round-Robin Scheduling

Round-robin scheduling is a simple dynamic scheduling algorithm with the
following characteristics:

• All ready jobs are placed in a FIFO (First-In-First-Out) queue.

• CPU time is allocated in fixed time slices or quanta.

• The job at the head of the queue is dispatched to execution for one
time slice.

• If the job does not complete by the end of its time slice, it is preempted
and placed at the tail of the queue.

• The process repeats, giving each job in the queue one time slice per
round (full traversal of the queue).

Round-robin scheduling divides the processor time equally among all
ready jobs, without considering any priority or deadline information.

2.2.2 Weighted Round-Robin

Weighted round-robin extends the basic scheme by assigning different weights
to tasks:

• Each job Ji of task τi gets ωi time slices per round.

• The total time in one round corresponds to
∑

i ωi.

• This allows tasks with higher importance or tighter timing constraints
to receive more CPU time.

For instance, in a weighted round-robin with two tasks τ1 and τ2 with
weights ω1 = 2 and ω2 = 1, the execution sequence would be τ1, τ1, τ2, τ1, τ1, τ2, . . .

2.2.3 Properties and Limitations

• Round-robin scheduling provides fairness in the sense that each job gets
an equal share of CPU time (or proportional to its weight in weighted
round-robin).

• It is well-suited for time-sharing systems but not for real-time systems
with hard deadlines.

• The time slice size affects system performance:
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– Too small: High overhead from frequent context switches.
– Too large: Poor response time for short jobs.

• Round-robin does not account for deadlines or other timing constraints,
making it unsuitable for most real-time applications without modifica-
tions.

• Not fit for jobs with precedence relations (where one task must complete
before another can start) whose execution spans multiple slices.

2.3 Priority-Driven Scheduling

2.3.1 Principles of Priority-Driven Scheduling

Priority-driven scheduling is based on the following principles:

• Each job is assigned a priority that reflects its urgency or importance.

• The job with the highest priority among all ready jobs is executed.

• The algorithm is greedy - it never leaves the processor idle if a job is
ready.

• Priority-driven algorithms can be preemptive or non-preemptive.

Priority-driven scheduling algorithms are commonly used in real-time
systems due to their flexibility and ability to express various scheduling
policies.

2.3.2 Static vs. Dynamic Priorities

Priority-driven scheduling can be classified based on when priorities are
assigned:

• Static-priority scheduling: Priorities are assigned to tasks at design
time and never change during execution. Each job of a task inherits
the same priority.

• Dynamic-priority scheduling: Priorities may change during execu-
tion:

– Fixed priority per job: Each job receives a priority at release,
which remains fixed for its execution but may differ from the
priorities of other jobs of the same task.

– Dynamic priority per job: The priority of a job can change
while it executes.
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Examples of static-priority scheduling include Rate Monotonic Scheduling
(RMS) and Deadline Monotonic Scheduling (DMS). Examples of dynamic-
priority scheduling include Earliest Deadline First (EDF) and Least Laxity
First (LLF).

2.3.3 Preemptive vs. Non-preemptive

Priority-driven scheduling can also be classified based on whether preemption
is allowed:

• Preemptive scheduling: The currently executing job can be inter-
rupted if a higher-priority job becomes ready.

• Non-preemptive scheduling: Once a job starts execution, it runs
to completion regardless of the arrival of higher-priority jobs.

• Cooperative scheduling (deferred preemption): A compromise
where preemption can only occur at specific points in the code, typically
between segments of code called non-preemptive regions.

Preemptive scheduling generally offers better responsiveness for high-
priority tasks but incurs overhead from context switches and may introduce
problems like priority inversion when resources are shared.

2.3.4 Dispatching Points

In priority-driven scheduling, scheduling decisions are made at dispatching
points, which include:

• Job releases (arrivals).

• Job completions.

• Resource release events (in systems with shared resources).

• In cooperative scheduling, when a job reaches a preemption point.

2.4 Optimality in Uniprocessor Scheduling

2.4.1 Earliest Deadline First (EDF)

EDF is a dynamic-priority scheduling algorithm where:

• The job with the earliest absolute deadline has the highest priority.

• Priorities are dynamically recomputed at each dispatching point.
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• For a job released at time r with relative deadline D, its absolute
deadline is d = r + D.

Optimality of EDF:
[Liu & Layland, 1973] For preemptive scheduling of independent tasks on

a single processor, Earliest Deadline First is optimal: if a feasible schedule
exists, EDF will find it.

Utilization-Based Schedulability Test for EDF:
For a set of n periodic tasks with implicit deadlines:

n∑
i=1

Ci

Ti
≤ 1 (2.4)

This is a necessary and sufficient condition for EDF schedulability with
implicit deadlines.

For constrained deadlines, the demand bound function (DBF) must be
used:

∀t > 0 :
n∑

i=1

⌊
t − Di

Ti

⌋
+ 1 · Ci ≤ t (2.5)

2.4.2 Least Laxity First (LLF)

LLF is another dynamic-priority scheduling algorithm where:

• The job with the least laxity (slack time) has the highest priority.

• Laxity Li(t) = di − t − Yi(t), where di is the absolute deadline, t is the
current time, and Yi(t) is the remaining execution time.

• Priorities must be recalculated continuously, as laxity changes with
time.

Optimality of LLF:
[Liu & Layland, 1973] For preemptive scheduling of independent tasks on

a single processor, Least Laxity First is optimal: if a feasible schedule exists,
LLF will find it.

LLF has the same theoretical optimality properties as EDF but suffers
from practical drawbacks:

• Higher computational overhead due to frequent priority recalculations.

• Prone to "thrashing" when multiple jobs have similar laxities, causing
frequent preemptions between them.
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2.4.3 Critical Instant and Busy Period

[Critical Instant] The critical instant for a task is the release time that leads
to the maximum response time for that task.

For fixed-priority scheduling of independent tasks with constrained dead-
lines, the critical instant for a task occurs when it is released simultaneously
with all higher-priority tasks.

[Busy Period] A level-i busy period is an interval during which the
processor is continuously busy executing jobs of priority i or higher, with
release times within the interval.

The concept of busy period is used in response time analysis, especially
for tasks with arbitrary deadlines, where multiple jobs of the same task may
be active simultaneously.

2.5 Predictability and Sustainability

2.5.1 Predictability

[Predictability] A scheduling algorithm is predictable if the response time
and start time of each job vary monotonically with execution time.

In a predictable scheduling algorithm, reducing the execution time of any
job cannot increase the response time of any job in the system.

The execution of independent jobs with given release times under pre-
emptive priority-driven scheduling on a single processor is predictable.

Predictability is an important property for real-time systems as it allows
worst-case analysis to be performed based on worst-case execution times.

2.5.2 Sustainability

[Sustainability] A scheduling algorithm is sustainable if any task set that is
schedulable remains schedulable when:

• Execution times decrease.

• Periods increase.

• Deadlines increase.

• Release jitter decreases.

Sustainability is a desirable property as it ensures that if a system
is verified to be schedulable under worst-case conditions, it will remain
schedulable under less demanding conditions.

Preemptive EDF and fixed-priority scheduling algorithms are sustainable
with respect to execution times, deadlines, and periods for independent tasks
on a single processor.
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2.6 Scheduling Anomalies

2.6.1 Scheduling Anomalies in Single-Processor Systems

In single-processor systems with fixed-priority scheduling of independent
tasks:

• Reducing execution times cannot lead to deadline misses (if the original
schedule was feasible).

• Increasing periods cannot lead to deadline misses.

• Increasing deadlines cannot lead to deadline misses.

These properties are a direct consequence of the predictability and sus-
tainability of single-processor fixed-priority scheduling.

2.6.2 Scheduling Anomalies in Self-Suspension

When tasks can suspend themselves (e.g., waiting for I/O), scheduling
anomalies can occur:

• Reducing execution times can lead to deadline misses.

• Reducing suspension times can lead to deadline misses.

Consider a task set with three tasks:

• τ1 = (0, 10, [2, 2, 2], 6) with periods, where the execution pattern is
[compute, suspend, compute].

• τ2 = (5, 10, [1, 1, 1], 4)

• τ3 = (7, 10, [1, 1, 1], 3)

This task set is schedulable under EDF. However, if we reduce τ1’s
execution or suspension time by 1 unit, τ3 will miss its deadline.

These anomalies occur because changing execution or suspension times
can shift the execution windows of tasks, potentially increasing interference
between them and disrupting the schedule in unexpected ways.
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Chapter 3

Fixed-Priority Scheduling

3.1 Workload Model

3.1.1 Basic Assumptions

The basic workload model for fixed-priority scheduling assumes:

• A set of n tasks, for constant n.

• All tasks are periodic or sporadic with known periods/minimum inter-
arrival times.

• Tasks are independent (no resource sharing or precedence constraints).

• All tasks have constrained or implicit deadlines (Di ≤ Ti).

• Each task has a single, fixed and known Worst-Case Execution Time
(WCET).

• All runtime overheads (context switching, clock interrupts, etc.) are
included in the WCET.

This model, though simplified, provides a foundation for analyzing fixed-
priority scheduling systems and can be extended to include more complex
features such as shared resources and task interactions.

3.2 Rate Monotonic Scheduling (RMS)

3.2.1 Priority Assignment

In Rate Monotonic Scheduling:

• Priorities are assigned based on task periods.

• The shorter the period, the higher the priority.

19
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• For any two tasks τi, τj : if Ti < Tj then Pi > Pj .

The intuition behind Rate Monotonic Scheduling is that tasks with
shorter periods need to execute more frequently and thus should have higher
priority to meet their deadlines.

3.2.2 Optimality of RMS

[Liu & Layland, 1973] Rate Monotonic priority ordering is optimal among
fixed-priority assignments for periodic tasks with implicit deadlines.

[Sketch] The proof is by contradiction. Assume a task set is schedulable
by some fixed-priority assignment but not by Rate Monotonic. Then there
must be at least one pair of tasks τi and τj such that Ti < Tj but Pi < Pj . By
swapping their priorities and showing that this cannot make an unschedulable
system schedulable, we reach a contradiction.

It’s important to note that the optimality of RMS holds only for:

• Independent tasks.

• Implicit deadlines (Di = Ti).

• Preemptive scheduling.

• Single-processor systems.

3.2.3 Schedulability Tests

Utilization-Based Test

For a set of n tasks with implicit deadlines under RMS:

U(n) =
n∑

i=1

Ci

Ti
≤ n(21/n − 1) (3.1)

As n → ∞, this bound approaches ln 2 ≈ 0.693.
This test is sufficient but not necessary - some task sets with utilization

higher than this bound may still be schedulable under RMS. The utilization
bound is tight in the sense that for any ϵ > 0, there exists a task set with
utilization n(21/n − 1) + ϵ that is not schedulable under RMS.

For n = 2 tasks, the utilization bound is 2(21/2 − 1) ≈ 0.83. Consider a
task set with:

• τ1 = (C1 = 2, T1 = 4)

• τ2 = (C2 = 4, T2 = 10)

The utilization is U = 2/4 + 4/10 = 0.5 + 0.4 = 0.9 > 0.83.
However, calculating the response times:
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• R1 = C1 = 2

• R2 = C2 + ⌈R2/T1⌉ · C1

Iteratively:

• R0
2 = 4

• R1
2 = 4 + ⌈4/4⌉ · 2 = 4 + 1 · 2 = 6

• R2
2 = 4 + ⌈6/4⌉ · 2 = 4 + 2 · 2 = 8

• R3
2 = 4 + ⌈8/4⌉ · 2 = 4 + 2 · 2 = 8 = R2

2

So R2 = 8 < 10 = D2, and the task set is schedulable despite exceeding
the utilization bound.

Hyperbolic Bound

The hyperbolic bound (Bini & Buttazzo, 2001) improves the utilization test
for RMS:

n∏
i=1

(Ui + 1) ≤ 2 (3.2)

where Ui = Ci/Ti is the utilization of task τi.
This test is also sufficient but not necessary. However, it is less pessimistic

than the original Liu & Layland bound and can accept more schedulable
task sets.

3.3 Deadline Monotonic Scheduling (DMS)

3.3.1 Priority Assignment

In Deadline Monotonic Scheduling:

• Tasks are assigned priorities based on their relative deadlines.

• The shorter the relative deadline, the higher the priority.

• For any two tasks τi, τj : if Di < Dj then Pi > Pj .

For tasks with implicit deadlines (Di = Ti), DMS is equivalent to RMS.
However, for tasks with constrained deadlines (Di < Ti), DMS and RMS
may assign different priorities.
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3.3.2 Optimality of DMS

[Leung & Whitehead, 1982] Deadline Monotonic priority ordering is optimal
among fixed-priority assignments for periodic tasks with constrained deadlines
(Di ≤ Ti).

The proof follows a similar structure to that of RMS optimality, showing
that any task set schedulable by some fixed-priority assignment must also be
schedulable by DMS.

It’s important to note that DMS is not optimal for arbitrary deadlines
(Di can be greater than Ti).

3.4 Response Time Analysis

3.4.1 Basic Concept

Response Time Analysis (RTA) is an exact schedulability test for fixed-
priority scheduling. It calculates the worst-case response time of each task
and compares it with the task’s deadline.

The worst-case response time occurs when:

• The task is released at its critical instant (simultaneously with all
higher-priority tasks).

• All tasks experience their worst-case execution times.

• Higher-priority tasks are released as frequently as possible.

3.4.2 Response Time Calculation

For task τi under fixed-priority scheduling, the worst-case response time Ri

is given by:

Ri = Ci + Ii (3.3)

where Ci is the task’s WCET and Ii is the interference from higher-priority
tasks:

Ii =
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (3.4)

where hp(i) is the set of tasks with higher priority than τi.

3.4.3 Iterative Solution

The equation for Ri is solved iteratively:
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Rn+1
i = Ci +

∑
j∈hp(i)

⌈
Rn

i

Tj

⌉
Cj (3.5)

Starting with R0
i = Ci, the iteration continues until either:

• Rn+1
i = Rn

i (a fixed point is reached), or

• Rn+1
i > Di (the deadline is exceeded)

The iterative process is guaranteed to converge if the total utilization is
less than 1.

Consider a task set with three tasks:

• τ1 = (C1 = 3, T1 = 7, D1 = 7)

• τ2 = (C2 = 3, T2 = 12, D2 = 12)

• τ3 = (C3 = 5, T3 = 20, D3 = 20)

Calculate the response times:
For τ1:

• R1 = C1 = 3 < D1 = 7, so τ1 is schedulable.

For τ2:

• R0
2 = C2 = 3

• R1
2 = C2 + ⌈R0

2/T1⌉ · C1 = 3 + ⌈3/7⌉ · 3 = 3 + 1 · 3 = 6

• R2
2 = C2 + ⌈R1

2/T1⌉ · C1 = 3 + ⌈6/7⌉ · 3 = 3 + 1 · 3 = 6 = R1
2

So R2 = 6 < D2 = 12, and τ2 is schedulable.
For τ3:

• R0
3 = C3 = 5

• R1
3 = C3 + ⌈R0

3/T1⌉ · C1 + ⌈R0
3/T2⌉ · C2 = 5 + ⌈5/7⌉ · 3 + ⌈5/12⌉ · 3 =

5 + 1 · 3 + 1 · 3 = 11

• R2
3 = C3 + ⌈R1

3/T1⌉ · C1 + ⌈R1
3/T2⌉ · C2 = 5 + ⌈11/7⌉ · 3 + ⌈11/12⌉ · 3 =

5 + 2 · 3 + 1 · 3 = 14

• R3
3 = C3 + ⌈R2

3/T1⌉ · C1 + ⌈R2
3/T2⌉ · C2 = 5 + ⌈14/7⌉ · 3 + ⌈14/12⌉ · 3 =

5 + 2 · 3 + 2 · 3 = 17

• R4
3 = C3 + ⌈R3

3/T1⌉ · C1 + ⌈R3
3/T2⌉ · C2 = 5 + ⌈17/7⌉ · 3 + ⌈17/12⌉ · 3 =

5 + 3 · 3 + 2 · 3 = 20

• R5
3 = C3 + ⌈R4

3/T1⌉ · C1 + ⌈R4
3/T2⌉ · C2 = 5 + ⌈20/7⌉ · 3 + ⌈20/12⌉ · 3 =

5 + 3 · 3 + 2 · 3 = 20 = R4
3

So R3 = 20 = D3 = 20, and τ3 is just schedulable.
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3.5 Task Interactions

3.5.1 Hard and Soft Tasks

In many systems, both hard and soft real-time tasks coexist:

• Hard tasks must never miss their deadlines.

• Soft tasks can occasionally miss deadlines with degraded performance.

When hard and soft tasks coexist, it’s important to ensure that soft tasks
do not interfere with the timely execution of hard tasks.

3.5.2 Strategies for Coexistence

There are two main strategies for handling mixed hard/soft task sets:

• Control knob 1: Design all tasks to be schedulable using average
execution times and arrival rates.

– In this approach, all tasks are treated equally during design.
– During transient overloads (when actual execution times exceed

average), some tasks may miss deadlines.
– The system is designed to gracefully degrade under overload.

• Control knob 2: Guarantee hard tasks using worst-case parameters
for all tasks.

– Hard tasks are placed at higher priorities.
– Each hard task is guaranteed to meet its deadline even if all tasks

experience their worst-case execution.
– Soft tasks are placed at lower priorities and may miss deadlines

during overloads.

The second approach provides stronger guarantees for hard tasks at the
expense of potentially poorer performance for soft tasks.

3.6 Handling Aperiodic Tasks

Aperiodic tasks do not have minimum inter-arrival times and thus cannot
claim hard deadlines. However, it’s often desirable to provide good responsive-
ness to them without compromising the schedulability of periodic/sporadic
tasks.
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3.6.1 Background Execution

The simplest approach is to run aperiodic tasks at the lowest priority, only
when no periodic task is ready. This ensures that aperiodic tasks do not
interfere with the schedulability of periodic tasks but may result in poor
responsiveness for aperiodic tasks.

3.6.2 Slack Stealing

Slack stealing allows aperiodic tasks to use the slack (unused CPU time) of
periodic tasks. The slack σ(t) at time t is the amount of execution that can
be deferred without causing any task to miss its deadline.

For each task τi, the slack at time t is:

σi(t) = max(0, De
i −

i∑
k=1

⌈
De

i

Tk

⌉
Ck) (3.6)

where De
i is the effective deadline of the task.

The system slack is the minimum slack across all tasks:

σ(t) = min
i

σi(t) (3.7)

Slack stealing works by:

• Computing the available slack at runtime.

• Assigning this slack to aperiodic tasks.

• Reclaiming the slack when periodic tasks complete earlier than their
worst-case.

Slack stealing can significantly improve aperiodic response times compared
to background execution but has higher overhead due to the need to compute
and track slack.

3.6.3 Server Mechanisms

Servers are special tasks dedicated to servicing aperiodic jobs. They have:

• A budget (execution time capacity) Cs.

• A replenishment period Ts.

• A priority assigned according to the system’s scheduling policy.

Main types of servers include:

• Polling Server: A periodic task that checks for pending aperiodic
requests.
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– If no aperiodic job is present when the server is activated, its
budget is lost for the current period.

– Simple but not bandwidth preserving.

• Deferrable Server: Preserves its budget when no aperiodic job is
present.

– Can service aperiodic jobs as soon as they arrive, up to its budget.
– Budget is replenished periodically regardless of consumption.
– Bandwidth preserving but can cause increased interference on

lower-priority tasks.

• Sporadic Server: Replenishes its budget based on actual consump-
tion.

– When the server consumes budget, it schedules a replenishment
for a time Ts units after the consumption began.

– The amount replenished equals the amount consumed.
– More complex but creates interference equivalent to a regular

periodic task.

Consider a system with:

• Periodic tasks τ1 = (C1 = 1, T1 = 3) and τ2 = (C2 = 1.5, T2 = 5).

• A Deferrable Server with (CDS = 0.5, TDS = 2) at the highest priority.

For the deferrable server, response time analysis must account for its
worst-case interference pattern, which occurs when an aperiodic job arrives
just before the end of the server’s period, causing the server to use its full
budget twice in a short interval.

3.7 Considerations for Practical Implementation

3.7.1 Priority Levels

Real systems may have limited priority levels, requiring tasks to share
priorities:

• When tasks share a priority level, they are typically scheduled in FIFO
order.

• This can lead to increased blocking and worse response times.

Priority mapping techniques help optimize the use of limited priority
levels:
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• Uniform mapping: Maps ranges of n priorities in the ideal system
to single priorities in the real system.

For k = 1, . . . , Ωs : {(k − 1)Q + 1, . . . , kQ} → πk (3.8)

where Q = Ωn/Ωs is the size of each priority range, Ωn is the number
of ideal priorities, and Ωs is the number of available priorities.

• Constant ratio mapping [Lehoczky & Sha, 1986]: Maps logarithmi-
cally increasing ranges of priorities.

For k = 1, . . . , Ωs : {Rk−1 + 1, . . . , Rk} → πk (3.9)

where Rk = ⌊(Rk−1 + 1)/g⌋ and g is the constant ratio.

For systems with limited priority levels, the schedulable utilization bound
for RMS with constant ratio mapping approaches:

f(g) =
{ ln 2

g+1−g , 1
2 < g ≤ 1

g, 0 < g ≤ 1
2

(3.10)

3.7.2 Release Jitter

Release jitter refers to the variation in the actual release time of a task from
its theoretical release time. This can occur due to:

• Clock inaccuracies.

• Delays in detecting release events.

• Variations in the behavior of the task activation mechanism.

For a task with jitter, the worst-case scenario occurs when:

• The task is released as late as possible (maximum jitter).

• But its deadline is still calculated from the earliest possible release
time.

The response time equation accounting for release jitter becomes:

Ri = Ci + Bi +
∑

j∈hp(i)

⌈
Ri + Jj

Tj

⌉
Cj (3.11)

where Jj is the release jitter of task j.
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Chapter 4

Task Interactions and
Blocking Effects

4.1 Task Cooperation and Communication
In real-world real-time systems, tasks often need to cooperate and com-
municate to fulfill their functions. This interaction introduces additional
complexities to the scheduling problem.

4.1.1 Communication Methods

Tasks can exchange data in two primary ways:

• Synchronous communication: Tasks send messages to one another
and wait for responses.

– Simple conceptually but can lead to unbounded waiting times.
– Generally avoided in hard real-time systems due to unpredictabil-

ity.

• Asynchronous communication: Tasks share memory locations and
access them in read/write mode.

– More complex to manage but provides better timing predictability.
– Requires careful access control to prevent data races.
– Standard approach in most real-time systems.

4.1.2 Challenges of Task Interaction

Task interaction introduces several challenges:

• Synchronous communication may lead to unbounded waiting times,
which defeats timeliness.

29
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• Asynchronous communication requires control mechanisms to en-
sure predictable behavior in the face of preemption, which can lead to
data races or inconsistent views of shared data.

• Priority inversion occurs when a high-priority task is blocked waiting
for a low-priority task that holds a needed resource.

• Deadlocks can occur when tasks wait for resources held by other tasks
in a circular dependency.

4.2 Preemption and Critical Sections

4.2.1 Atomic Operations

At the hardware level, CPU instructions are atomic:

• Individual processor instructions cannot be preempted.

• The CPU executes a cycle of micro-operations (fetch, decode, execute,
etc.) for each instruction.

• Preemption can only occur between instructions, not during an instruc-
tion.

However, most meaningful operations in programs consist of sequences
of instructions, and these sequences can be preempted, potentially leading
to data races if they access shared data.

4.2.2 Critical Sections

A critical section is a code sequence that accesses shared resources and must
be executed atomically (without interference from other tasks).

[Critical Section] A critical section is a sequence of instructions that:

• Accesses shared resources.

• Must be executed without interference from other tasks accessing the
same resources.

• Must be protected by synchronization mechanisms to ensure mutual
exclusion.

4.2.3 Inhibiting Preemption

The simplest approach to protect critical sections is to inhibit preemption:

• Disable interrupts during the critical section.
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• Execute the critical section without the possibility of being preempted.

• Re-enable interrupts after the critical section.

This approach ensures atomicity but at the cost of priority inversion:

• A high-priority task that becomes ready while a low-priority task is
executing a non-preemptible critical section will be blocked.

• The blocking time depends on the duration of the critical section.

The maximum blocking time for a task τh due to non-preemptible execu-
tion is:

Bh(np) = max
k=h+1,...,n

(θk) (4.1)

where θk is the longest non-preemptible execution segment of task τk.
This blocking occurs at most once per job release, specifically at the

release time.

4.2.4 Priority Inversion

[Priority Inversion] Priority inversion occurs when a higher-priority task is
blocked by a lower-priority task, typically due to resource sharing.

Consider three tasks with priorities P1 > P2 > P3:

• τ3 (low priority) acquires a shared resource R.

• τ1 (high priority) becomes ready and tries to acquire R, but is blocked
by τ3.

• τ2 (medium priority) becomes ready and preempts τ3.

• τ1 remains blocked until τ2 completes and τ3 can continue to eventually
release R.

In this scenario, τ1 is effectively blocked by τ2, despite having higher
priority. The blocking duration is unpredictable and depends on the execution
time of τ2.

Uncontrolled priority inversion can lead to unpredictable timing behavior
and is a major concern in real-time systems.
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4.3 Self-Suspension

4.3.1 Effects on Analysis

Self-suspension occurs when a task voluntarily suspends its execution, typi-
cally to wait for an external event such as I/O completion. This has significant
implications for scheduling analysis:

• A self-suspending task increases its response time by at least the
duration of its suspension.

• Self-suspension can lead to scheduling anomalies where reducing execu-
tion or suspension times paradoxically increases response times.

• Self-suspension changes the critical instant scenario, making the analy-
sis more complex.

4.3.2 Blocking Due to Self-Suspension

The blocking suffered by task τi due to self-suspension includes:

Bi(ss) = max(δi) +
i−1∑
k=1

min(ek, max(δk)) (4.2)

where:

• δi is the maximum self-suspension time of τi.

• ek is the execution time of τk.

• The summation represents the interference from higher-priority tasks
that may resume from self-suspension and preempt τi.

For a task τi that self-suspends K times during execution, the total
blocking is:

Bi = Bi(ss) + (K + 1) · Bi(np) (4.3)

This is because non-preemptive blocking can occur after each self-suspension
when the task resumes execution.

4.4 Resource Access Protocols

Resource access protocols are designed to control access to shared resources
and mitigate priority inversion problems. They specify when and how tasks
can acquire and release shared resources.
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4.4.1 Priority Inheritance Protocol (PIP)

Basic Priority Inheritance Protocol (BPIP):
• When a high-priority task is blocked by a lower-priority task holding

a needed resource, the lower-priority task inherits the priority of the
blocked task.

• The inherited priority is retained until the resource is released, at which
point the task reverts to its original priority.

• This approach prevents unbounded priority inversion by ensuring that
if a task blocks a higher-priority task, it executes at the higher priority
level, preventing preemption by medium-priority tasks.

Protocol Rules:
1. Scheduling: Tasks are scheduled according to preemptive priority-

driven scheduling.

2. Allocation: When task τj requires access to resource R at time t:

• If R is free, R is assigned to τj until it is released.
• If R is busy, τj ’s request is denied and it becomes blocked.

3. Priority Inheritance: When task τj is blocked by task τl, τl inherits
τj ’s priority. This inherited priority is retained until τl releases R.

Limitations of PIP:
• Does not prevent deadlocks.

• Does not prevent chained blocking (when a task is blocked multiple
times, once for each resource it needs).

• Priority inheritance is transitive, which can lead to complex blocking
patterns.

Consider three tasks with priorities P1 > P2 > P3 and two resources R1
and R2:

1. τ3 acquires R1.

2. τ1 becomes ready and attempts to acquire R1 but is blocked. τ3 inherits
priority P1.

3. τ2 becomes ready but cannot preempt τ3 because τ3 is now running at
priority P1.

4. τ3 releases R1 and reverts to priority P3.

5. τ1 acquires R1 and continues execution.
Under PIP, τ1 is only blocked for the duration of τ3’s critical section, not

for the execution of τ2 as would occur without the protocol.
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4.4.2 Priority Ceiling Protocol (PCP)

Basic Priority Ceiling Protocol (BPCP) extends PIP with additional con-
straints to prevent deadlocks and reduce blocking:

• Each resource R is assigned a priority ceiling, denoted as πR, which
is the highest priority of any task that may use the resource.

• At time t, the system has a system ceiling πs(t), which is the highest
priority ceiling of all resources currently in use.

• If no resource is in use at time t, πs(t) is set to a value Ω lower than
the lowest task priority.

Protocol Rules:

1. Scheduling: Tasks are scheduled according to preemptive priority-
driven scheduling.

2. Allocation: When task τj with priority πj requests resource R at time
t:

• If R is already assigned, the request is denied and τj becomes
blocked.

• If R is free and πj > πs(t), the request is granted.
• If τj currently owns the resource whose priority ceiling equals

πs(t), the request is granted.
• Otherwise, the request is denied and τj becomes blocked. This is

known as avoidance blocking.

3. Priority Inheritance: When task τj is blocked by a lower-priority
task τl, τl inherits τj ’s priority until τl releases all resources with priority
ceiling ≥ πj .

[Sha, Rajkumar & Lehoczky, 1990] Under the Priority Ceiling Protocol,
a task can be blocked for at most the duration of one critical section.

The maximum blocking time for task τi due to resource contention is:

Bi(rc) = max
k=i+1,...,n

{Ck(r)|πr ≥ πi} (4.4)

where Ck(r) is the execution time of task τk inside its critical section for
resource r, and πr is the priority ceiling of resource r.

PCP prevents:

• Deadlocks (through avoidance blocking).

• Chained blocking (through the priority ceiling rule).

• Transitive blocking (a task can be blocked at most once per job).
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4.4.3 Stack Resource Policy (SRP)

Stack-based Ceiling Priority Protocol (SB-CPP or SRP) is a variant of PCP
designed to allow stack sharing among tasks:

• Similar to PCP but designed to prevent blocking after task activation.

• A task is not allowed to start execution until its priority is higher than
the system ceiling.

• Once a task starts execution, it will never be blocked on resource access.

Protocol Rules:

1. System Ceiling Computation: When all resources are free, πs(t) =
Ω (below the lowest priority). The ceiling is updated whenever a
resource is assigned or released.

2. Scheduling: Upon release at time t, task τj with priority πj remains
blocked until πj > πs(t). Tasks that are not blocked are scheduled
according to preemptive priority-driven scheduling.

3. Allocation: Whenever a task issues a request for a resource, the
request is always granted.

SRP has several advantageous properties:

• A task can be blocked at most once, and only before it starts execution.

• Tasks can share a single stack, as they never suspend execution once
started.

• SRP prevents deadlocks and provides the same blocking bound as PCP.

• Simpler implementation than PCP because it avoids the need to track
priority inheritance.

4.4.4 Ceiling Priority Protocol (CPP)

Ceiling Priority Protocol (CPP) is a variant of PCP that does not use the
system ceiling concept:

• Each resource has a priority ceiling as in PCP.

• When a task acquires a resource, its priority is immediately raised to
the resource’s priority ceiling.

• The raised priority is maintained until the resource is released.

Protocol Rules:
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1. Scheduling: Tasks are scheduled with fixed-priority preemptive schedul-
ing with "FIFO within priorities" as the tie-breaking rule.

2. Execution Priority: A task that does not hold any resource runs
at its assigned priority. A task that acquires a resource runs at the
highest priority ceiling of all resources it holds.

3. Allocation: Whenever a task issues a request for a resource, the
request is granted.

CPP has similar blocking bounds to PCP but with simpler implementation
requirements.

4.5 Computing Blocking Times

4.5.1 Direct, Inheritance, and Avoidance Blocking

Under BPCP, a task can experience three types of blocking:

1. Direct Blocking: Occurs when a task attempts to access a resource
that is already locked by a lower-priority task.

2. Inheritance Blocking: Occurs when a task is preempted by a lower-
priority task that has inherited a higher priority.

3. Avoidance Blocking: Occurs when a task is denied access to a free
resource because the system ceiling is too high (to prevent potential
deadlocks).

To calculate blocking times, a system of tables is often used:

• "Directly blocked by" table shows the maximum blocking when a specific
task accesses a specific resource.

• "Inheritance blocked by" table shows the maximum blocking due to
priority inheritance.

• "Avoidance blocked by" table shows the maximum blocking due to
ceiling-based resource denial.

The worst-case blocking for a task is the maximum value across all three
tables.
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4.5.2 Comparison of Resource Access Protocols
Protocol Prevents Deadlocks Prevents Chained Blocking Maximum Blocking Implementation Complexity
BPIP No No Multiple sections Low
BPCP Yes Yes One section High
SRP Yes Yes One section Medium
CPP Yes Yes One section Low

• BPIP: Simplest to implement but provides weaker guarantees. Appro-
priate for systems with simpler resource usage patterns.

• BPCP: Strongest guarantees but most complex to implement. Appro-
priate for systems with complex resource usage patterns.

• SRP: Similar guarantees to BPCP with the additional benefit of stack
sharing. Appropriate for memory-constrained systems.

• CPP: Good balance of guarantees and implementation simplicity.
Appropriate for many practical systems.
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Chapter 5

Further Model Extensions

5.1 Cooperative Scheduling

5.1.1 Deferred Preemption

Cooperative or deferred-preemption scheduling is a compromise between
fully preemptive and non-preemptive scheduling:

• Tasks are divided into non-preemptible slots or regions.

• Preemption can only occur between these slots.

• Tasks voluntarily yield control at the end of each slot by calling a
yield function.

This approach allows for better control over preemption points, reducing
context-switching overhead and improving predictability.

5.1.2 Fixed vs. Floating Non-Preemptive Regions

Non-preemptive regions can be implemented in two ways:

• Fixed non-preemptive regions: The location of non-preemptive
regions is predetermined at design time. Preemption points occur at
fixed locations in the code.

• Floating non-preemptive regions: Tasks can decide when to enter
a non-preemptive region based on runtime conditions. This provides
more flexibility but may make timing analysis more complex.

Deferred preemption scheduling dominates both fully preemptive and non-
preemptive scheduling: any task set schedulable under either fully preemptive
or non-preemptive scheduling is also schedulable under deferred preemption
scheduling.

39
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5.1.3 Response Time Analysis with Deferred Preemption

For a task with a final non-preemptive region of length Fi, the response time
equation is modified:

wn+1
i = Ci + Bmax +

∑
j∈hp(i)

⌈
wn

i

Tj

⌉
Cj − Fi (5.1)

Ri = wn
i + Fi (5.2)

The final non-preemptive region effectively reduces the interference from
higher-priority tasks, as they cannot preempt during this region.

Consider a task set with three tasks:

• τ1 = (C1 = 2, T1 = 10, D1 = 10) with final non-preemptive region
F1 = 1

• τ2 = (C2 = 3, T2 = 15, D2 = 15) with final non-preemptive region
F2 = 1

• τ3 = (C3 = 5, T3 = 20, D3 = 20) with final non-preemptive region
F3 = 2

For τ3, we would calculate:

w0
3 = C3 − F3 = 5 − 2 = 3

w1
3 = C3 − F3 + ⌈w0

3/T1⌉ · C1 + ⌈w0
3/T2⌉ · C2

= 3 + ⌈3/10⌉ · 2 + ⌈3/15⌉ · 3
= 3 + 1 · 2 + 1 · 3 = 8

w2
3 = C3 − F3 + ⌈w1

3/T1⌉ · C1 + ⌈w1
3/T2⌉ · C2

= 3 + ⌈8/10⌉ · 2 + ⌈8/15⌉ · 3
= 3 + 1 · 2 + 1 · 3 = 8 = w1

3

Therefore, R3 = w2
3 + F3 = 8 + 2 = 10.

Without the final non-preemptive region, the response time would be:

R3 = C3 + ⌈R3/T1⌉ · C1 + ⌈R3/T2⌉ · C2

Solving iteratively:

R0
3 = 5

R1
3 = 5 + ⌈5/10⌉ · 2 + ⌈5/15⌉ · 3 = 5 + 1 · 2 + 1 · 3 = 10

R2
3 = 5 + ⌈10/10⌉ · 2 + ⌈10/15⌉ · 3 = 5 + 1 · 2 + 1 · 3 = 10 = R1

3
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So, R3 = 10 with or without the final non-preemptive region in this
example. However, with a different task set, the final non-preemptive region
could make a difference in schedulability.

5.2 Release Jitter

5.2.1 Sources of Jitter

Release jitter is the variation in the actual release time of a task from its
theoretical release time. It can arise from several sources:

• Clock inaccuracies: Variations in the clock that triggers periodic
tasks.

• Precedence constraints: When a task must wait for another task to
complete before it can start.

• Variations in response times: When a task’s release is triggered by
the completion of another task, variations in the predecessor’s response
time translate to jitter in the successor’s release.

• RTOS overheads: Delays in detecting and processing release events
due to system overheads.

5.2.2 Jitter in Precedence Constraints

In systems where tasks have precedence constraints, jitter propagates through
the task chain:

• If task τk releases task τv at the end of its execution, the release time
jitter of τv is affected by the response time jitter of τk.

• The release jitter of τv is the difference between the worst-case and
best-case response times of τk: Jv = Rk − Rbest

k .

• This can lead to minimum inter-arrival times for τv that are shorter
than the period of τk, specifically: Tv = Tk − Jv.

Consider a periodic task τk with period Tk = 20 that triggers a sporadic
task τv. If τk has a worst-case response time Rk = 15 and a best-case response
time Rbest

k = 1, then τv has a release jitter Jv = 15 − 1 = 14.
The minimum inter-arrival time for τv could be as low as Tv = Tk − Jv =

20 − 14 = 6, which is much shorter than τk’s period of 20.
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5.2.3 Effects on Analysis

Release jitter affects the interference that higher-priority tasks impose on
lower-priority tasks:

• A task with jitter may arrive in bursts, with consecutive arrivals
separated by less than its nominal period.

• This increases the interference on lower-priority tasks within a given
time interval.

The response time equation accounting for release jitter becomes:

Ri = Ci + Bi +
∑

j∈hp(i)

⌈
Ri + Jj

Tj

⌉
Cj (5.3)

where Jj is the release jitter of task j.

5.3 Arbitrary Deadlines

5.3.1 The Busy Period Analysis

When task deadlines can exceed their periods (Di > Ti), multiple jobs of the
same task may be active simultaneously. This complicates the analysis:

• We need to consider the response time of each job within a level-i busy
period.

• A level-i busy period is an interval during which the processor is
continuously busy executing tasks with priority i or higher.

For tasks with arbitrary deadlines, the response time analysis must
consider multiple job releases:

wn+1
i (q) = (q + 1)Ci +

∑
j∈hp(i)

⌈
wn

i (q)
Tj

⌉
Cj (5.4)

where q = 0, 1, 2, . . . represents the job index within the busy period.
The response time of the q-th job is:

Ri(q) = wn
i (q) − qTi (5.5)

The worst-case response time for task τi is:

Ri = max
q

Ri(q) (5.6)

The number of jobs to check is bounded by the smallest q such that
Ri(q) ≤ Ti or wi(q) ≤ (q + 1)Ti.

Consider a task set with two tasks:
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• τ1 = (C1 = 3, T1 = 7, D1 = 7)

• τ2 = (C2 = 5, T2 = 8, D2 = 12)

For τ2, we need to check multiple jobs within the busy period:
For q = 0 (first job):

w0
2(0) = C2 = 5

w1
2(0) = C2 + ⌈w0

2(0)/T1⌉ · C1 = 5 + ⌈5/7⌉ · 3 = 5 + 1 · 3 = 8
w2

2(0) = C2 + ⌈w1
2(0)/T1⌉ · C1 = 5 + ⌈8/7⌉ · 3 = 5 + 2 · 3 = 11

w3
2(0) = C2 + ⌈w2

2(0)/T1⌉ · C1 = 5 + ⌈11/7⌉ · 3 = 5 + 2 · 3 = 11 = w2
2(0)

Therefore, R2(0) = w3
2(0) − 0 · T2 = 11 − 0 = 11 < D2 = 12.

For q = 1 (second job):

w0
2(1) = 2C2 = 10

w1
2(1) = 2C2 + ⌈w0

2(1)/T1⌉ · C1 = 10 + ⌈10/7⌉ · 3 = 10 + 2 · 3 = 16
w2

2(1) = 2C2 + ⌈w1
2(1)/T1⌉ · C1 = 10 + ⌈16/7⌉ · 3 = 10 + 3 · 3 = 19

w3
2(1) = 2C2 + ⌈w2

2(1)/T1⌉ · C1 = 10 + ⌈19/7⌉ · 3 = 10 + 3 · 3 = 19 = w2
2(1)

Therefore, R2(1) = w3
2(1) − 1 · T2 = 19 − 8 = 11 < D2 = 12.

Since w2(1) = 19 > (1 + 1) · T2 = 16, we need to check q = 2:

w0
2(2) = 3C2 = 15

w1
2(2) = 3C2 + ⌈w0

2(2)/T1⌉ · C1 = 15 + ⌈15/7⌉ · 3 = 15 + 3 · 3 = 24
w2

2(2) = 3C2 + ⌈w1
2(2)/T1⌉ · C1 = 15 + ⌈24/7⌉ · 3 = 15 + 4 · 3 = 27

w3
2(2) = 3C2 + ⌈w2

2(2)/T1⌉ · C1 = 15 + ⌈27/7⌉ · 3 = 15 + 4 · 3 = 27 = w2
2(2)

Therefore, R2(2) = w3
2(2) − 2 · T2 = 27 − 16 = 11 < D2 = 12.

Since w2(2) = 27 > (2 + 1) · T2 = 24, we need to check q = 3:

w0
2(3) = 4C2 = 20

w1
2(3) = 4C2 + ⌈w0

2(3)/T1⌉ · C1 = 20 + ⌈20/7⌉ · 3 = 20 + 3 · 3 = 29
w2

2(3) = 4C2 + ⌈w1
2(3)/T1⌉ · C1 = 20 + ⌈29/7⌉ · 3 = 20 + 5 · 3 = 35

w3
2(3) = 4C2 + ⌈w2

2(3)/T1⌉ · C1 = 20 + ⌈35/7⌉ · 3 = 20 + 5 · 3 = 35 = w2
2(3)

Therefore, R2(3) = w3
2(3) − 3 · T2 = 35 − 24 = 11 < D2 = 12.
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We continue checking until we find a q such that R2(q) ≤ T2 or w2(q) ≤
(q + 1)T2. Let’s check q = 4:

w0
2(4) = 5C2 = 25

w1
2(4) = 5C2 + ⌈w0

2(4)/T1⌉ · C1 = 25 + ⌈25/7⌉ · 3 = 25 + 4 · 3 = 37
w2

2(4) = 5C2 + ⌈w1
2(4)/T1⌉ · C1 = 25 + ⌈37/7⌉ · 3 = 25 + 6 · 3 = 43

w3
2(4) = 5C2 + ⌈w2

2(4)/T1⌉ · C1 = 25 + ⌈43/7⌉ · 3 = 25 + 7 · 3 = 46
w4

2(4) = 5C2 + ⌈w3
2(4)/T1⌉ · C1 = 25 + ⌈46/7⌉ · 3 = 25 + 7 · 3 = 46 = w3

2(4)

Therefore, R2(4) = w4
2(4) − 4 · T2 = 46 − 32 = 14 > D2 = 12.

The fourth job of τ2 misses its deadline. Therefore, the task set is not
schedulable.

5.4 Offsets

5.4.1 Benefits of Offsets

Offsets specify the relative release times of tasks and can provide several
benefits:

• Reduce peak processor load by spreading out task releases.

• Improve schedulability by avoiding the worst-case scenario where all
tasks are released simultaneously.

• Create precedence relations between tasks to model functional depen-
dencies.

• Reduce interference between tasks with the same period.

5.4.2 Analysis with Static Offsets

Static offsets complicate the analysis because the critical instant assumption
(all tasks released simultaneously) no longer holds:

• The critical instant can occur at the release of any task within the
hyperperiod.

• For task sets with many tasks, checking all possible release combinations
becomes intractable.

For tasks with offsets, a non-optimal but tractable analysis approach is
to:
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• Replace task pairs with the same period with a notional task that
represents their combined effect.

• The notional task has:

Tn = Ta = Tb

Cn = max(Ca, Cb)
Dn = min(Da, Db)
Pn = max(Pa, Pb)

(5.7)

• Perform standard analysis on the modified task set.

This approach is pessimistic but computationally feasible. More advanced
techniques, such as offset-based RTA, have been developed to provide less
pessimistic results.

5.5 Transactions

5.5.1 Task Concatenations

In a transaction, the completion of one task typically triggers the release of
the next task in the chain. The original periodic (or sporadic) nature of the
first task in the transaction propagates to the following tasks, but with the
addition of release jitter. This jitter accumulates through the transaction as
we have seen in the section on release jitter.

The end-to-end timing properties of a transaction are crucial:

• End-to-end response time: The time from the release of the first
task in the transaction to the completion of the last task. This must
be less than or equal to the end-to-end deadline for the transaction to
be considered feasible.

• End-to-end deadline: The maximum allowable time for the entire
transaction to complete.

5.5.2 End-to-End Analysis

Analyzing the timing properties of transactions requires adapting standard
response time analysis techniques:

• Tasks later in the transaction can inherit release jitter from earlier
tasks.

• The release jitter of a task in a transaction is equal to the worst-case
completion time variation of its predecessor.
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• This can be modeled as dynamic offsets, where each task’s offset is
dependent on the response times of preceding tasks.

Ji = Rwc
i−1 − Rbc

i−1 (5.8)

where Rwc
i−1 is the worst-case response time of the predecessor task and

Rbc
i−1 is its best-case response time.

The worst-case end-to-end response time of a transaction Γ is:

RΓ =
∑
i∈Γ

(Ri − Ji) + Jfirst (5.9)

where Jfirst is the release jitter of the first task in the transaction.

5.6 Worst-Case Execution Time Analysis

5.6.1 The WCET Challenge

The Worst-Case Execution Time (WCET) is the maximum time a task could
take to execute on a given hardware platform:

• Must account for all possible inputs and initial states

• Must consider the worst-case execution path through the program

• Must account for hardware effects like caches, pipelines, and branch
prediction

Determining the exact WCET is generally not computable (a version of
the halting problem), but safe upper bounds can be established.

WCET bounds must be:

• Safe: To upper-bound all possible executions

• Tight: To avoid costly over-dimensioning

5.6.2 WCET Analysis Techniques

Static Analysis

Static WCET analysis examines a program without executing it:

• Flow analysis: Determines possible execution paths

– Control flow analysis builds a control flow graph (CFG)
– Value analysis resolves memory accesses
– Loop bound analysis determines maximum iteration counts



5.6. Worst-Case Execution Time Analysis 47

• Processor behavior modeling: Models the timing of instructions

– Cache analysis predicts cache hits and misses

– Pipeline analysis models instruction timing including stalls

– Branch prediction analysis estimates branch misprediction penal-
ties

• Calculation: Computes the WCET from the above analyses

– Path-based approaches enumerate all paths

– Tree-based approaches calculate bottom-up on the syntax tree

– IPET (Implicit Path Enumeration Technique) uses integer linear
programming

Measurement-Based Analysis

Measurement-based WCET analysis relies on empirical observation:

• Execute the program with various inputs and measure execution times

• Apply statistical methods to estimate WCET

• Add safety margins to account for unobserved cases

Limitations include:

• Difficulty in generating worst-case inputs

• Inability to guarantee coverage of all execution scenarios

• Hardware effects (e.g., caches) making measurements unstable

Hybrid Approaches

Hybrid WCET analysis combines static and measurement-based methods:

• Static analysis to identify the structure and possible paths

• Measurements of small code segments (basic blocks) on the target
hardware

• Combination of measurements using the structure information
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5.6.3 Challenges in WCET Analysis

Modern processors present numerous challenges for WCET analysis:

• Caches: Create history-dependent execution times

• Pipelines: Create complex interactions between instructions

• Branch prediction: Introduces variability based on execution history

• Out-of-order execution: Makes timing analysis more complex

• Shared resources in multicore: Creates interference between cores

• Timing anomalies: Local worst case doesn’t always lead to global
worst case

[Timing Anomaly] A situation where the local worst case (e.g., a cache
miss) does not necessarily lead to the global worst-case execution time.

5.6.4 WCET Tools and Techniques

Several tools and techniques have been developed for WCET analysis:

• Commercial tools like aiT, RapiTime, and Bound-T

• Academic tools like SWEET, OTAWA, and Chronos

• Specialized programming languages and guidelines for timing pre-
dictability

• Processor architectures designed for predictability

5.7 Introduction to Real-Time Scheduling on Mul-
ticore Processors

5.7.1 Motivation for Multicore

The paradigm shift from single-core to multicore processors was driven by:

• Power constraints: The "power wall" limiting frequency scaling

• ILP limits: Diminishing returns from instruction-level parallelism

• Moore’s Law continuation: Transistor density increases enabling
more cores

This shift creates both opportunities and challenges for real-time systems:

• Opportunities for increased throughput and parallel execution

• Challenges for predictability due to shared resources and complex
interactions
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5.7.2 Multicore Architectures

Multicore processors come in various configurations:

• Homogeneous: All cores identical

• Heterogeneous: Different types of cores (e.g., big.LITTLE)

• Cache organization: Private vs. shared caches

• Memory organization: Uniform vs. non-uniform memory access
(NUMA)

5.7.3 Resource Sharing in Multicore

In a multicore processor, cores share various resources:

• Last-level cache: Shared among all cores

• Memory controller: Controls access to main memory

• Memory bus: Transfers data between caches and memory

• I/O devices: Peripherals shared among cores

Contention for these shared resources creates interference, which affects
execution times and can harm predictability.

5.7.4 Multicore Scheduling Paradigms

There are three primary approaches to multicore scheduling:

• Partitioned scheduling: Each task is statically assigned to a specific
core, and each core is scheduled independently

– Advantages: Simpler analysis, no migration costs, better cache
locality

– Disadvantages: Limited to task sets that can be partitioned effec-
tively

• Global scheduling: All tasks can execute on any core, and there is a
single ready queue for all cores

– Advantages: Better load balancing, higher utilization possible
– Disadvantages: Migration costs, more complex analysis, cache

inefficiency

• Hybrid scheduling: Combines elements of both approaches
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– Clustered scheduling: Cores are grouped into clusters, with parti-
tioning between clusters and global scheduling within clusters

– Semi-partitioned scheduling: Most tasks are partitioned, but some
tasks can migrate between specific cores

5.7.5 Challenges in Multicore Scheduling

Multicore scheduling faces several challenges not present in single-core sys-
tems:

• Dhall’s effect: A phenomenon where high-utilization tasks can cause
global EDF and RM to miss deadlines even at low total utilization

• Scheduling anomalies: Counterintuitive behavior where reducing
execution time or increasing resources leads to worse schedulability

• Task allocation: The bin-packing problem of assigning tasks to cores

• Work conservation: Ensuring processors don’t idle when work is
available

• Inter-core interference: Accounting for shared resource contention

5.7.6 Multicore Schedulability Analysis

Schedulability analysis for multicore systems is more complex than for single-
core:

• Partitioned scheduling: Apply single-core analysis per core, after
solving the task allocation problem

• Global scheduling: Must account for migration costs and variable
interference patterns

• Response time analysis: Must consider interference from tasks on
other cores

• Utilization bounds: Generally lower than single-core bounds

Sufficient utilization bounds for global EDF:

Usum ≤ m − (m − 1) · Umax (5.10)

where m is the number of cores and Umax is the maximum task utilization.
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5.8 Seeking the Lost Optimality

5.8.1 The Optimality Problem

Optimality has different meanings in scheduling:

• Optimal priority assignment: For a given scheduling algorithm,
finding the priority ordering that makes the most task sets schedulable

• Optimal scheduling algorithm: An algorithm that can schedule
any feasible task set

In single-core systems, EDF is optimal for preemptive scheduling of
independent tasks with implicit deadlines. However, this optimality is lost
in multicore systems.

5.8.2 Proportionate Fairness (P-Fair)

P-fair scheduling was the first optimal multicore scheduling algorithm:

• Based on the fluid scheduling model, where each task makes progress
at a constant rate proportional to its utilization

• Requires tasks to receive processor time in proportion to their utilization
at each time unit

• Ensures each task τi with utilization ui receives between ⌊t · ui⌋ and
⌈t · ui⌉ time units by time t

• Requires frequent preemptions and migrations, making it impractical

5.8.3 DP-Fair and LLREF

DP-Fair (Deadline-Partitioning Fair) and LLREF (Largest Local Remaining
Execution First) reduce the overhead of P-fair:

• Divide time into slices based on task deadlines

• Ensure proportionate progress only at slice boundaries

• Use simpler dispatching rules within time slices

• Remain optimal while reducing preemptions
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5.8.4 RUN: Reduction to Uniprocessor

RUN (Reduction to UNiprocessor) is an optimal multicore scheduling algo-
rithm with lower overhead:

• Based on the insight that scheduling m tasks with total utilization
m − 1 on m processors is equivalent to scheduling the dual task set
with utilization 1 on a single processor

• Uses a reduction tree to recursively convert a multiprocessor scheduling
problem into a uniprocessor one

• Employs packing and server techniques to reduce task set size

• Achieves optimality with significantly fewer preemptions and migrations
than other optimal algorithms

5.8.5 QPS and Other Approaches

QPS (Quasi-Partitioned Scheduling) and other recent approaches aim to
combine optimality with practical efficiency:

• QPS extends RUN with more efficient reductions

• U-EDF uses utilization information to make EDF decisions

• NVNLF (Non-Vary Non-Laxity First) combines LLF principles with
limited migrations

5.9 Sharing Resources Across Processors

5.9.1 The Multiprocessor Resource Sharing Problem

Resource sharing in multiprocessor systems introduces new challenges:

• Blocking chains: Dependencies across processors can create complex
blocking patterns

• Remote blocking: Tasks blocked by tasks on other processors

• Priority inversion: More complex due to parallel execution

• Deadlocks: More likely with distributed resources
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5.9.2 Suspension-Based Protocols

Suspension-based protocols allow tasks waiting for a resource to suspend:

• MPCP (Multiprocessor Priority Ceiling Protocol)

– Resources have a global ceiling priority
– Tasks accessing global resources execute at ceiling priority
– Tasks blocked on a global resource suspend and are placed in a

priority queue

• FMLP (Flexible Multiprocessor Locking Protocol)

– Classifies resources as short or long
– Short resources use spin locks
– Long resources use suspension and FIFO ordering

• MPCP+ and DPCP (Distributed Priority Ceiling Protocol)

– Extend MPCP for various multiprocessor configurations
– Use synchronization processors for global resources

5.9.3 Spin-Based Protocols

Spin-based protocols keep tasks actively waiting for resources:

• MSRP (Multiprocessor Stack Resource Policy)

– Tasks spin when blocked on a global resource
– FIFO ordering for access to global resources
– Non-preemptible critical sections

• SPEPP (Spinning Processor Executes for Preempted Proces-
sor)

– Tasks spin when blocked
– If a lock holder is preempted, a spinning task executes on its

behalf

• MrsP (Multiprocessor Resource Sharing Protocol)

– Combines MSRP with helping mechanisms
– Lock holders can migrate to spinning processors
– Preserves response-time analysis compatibility
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5.9.4 Blocking Analysis for Multiprocessor Protocols

Analyzing blocking in multiprocessor systems is more complex:

• Suspension-oblivious analysis: Treats suspensions as execution,
simpler but pessimistic

• Suspension-aware analysis: Accounts for the effect of suspensions,
more accurate but more complex

• Blocking components: Direct blocking, push-through blocking, in-
heritance blocking, and more

5.9.5 Priority Assignments and Blocking

Priority assignment interacts with resource sharing:

• Traditional assignments (RM, DM) may be suboptimal

• Blocking-aware priority assignments consider the effect of sharing

• Optimal assignment for resource sharing is NP-hard

5.10 Mixed-Criticality Systems

5.10.1 Motivation and Background

Mixed-criticality systems integrate components of different importance or
criticality:

• Safety-critical components: Must meet stringent certification re-
quirements

• Non-critical components: Provide added functionality but failures
are tolerable

• Resource efficiency: Need to efficiently use resources while main-
taining guarantees

Traditional approaches use static partitioning (temporal and spatial
isolation) but can be inefficient.

5.10.2 Vestal’s Model

Vestal’s model (2007) introduced a formal framework for mixed-criticality:

• Tasks have different WCET estimates for different criticality levels
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• More conservative estimates for higher criticality levels

• System operates in different modes corresponding to criticality levels

• Mode changes occur when a task exceeds its WCET estimate for the
current mode

[Mixed-Criticality Task] A mixed-criticality task τi is characterized by
the tuple (Ti, Di, Li, C⃗i), where:

• Ti is the period

• Di is the deadline

• Li is the criticality level

• C⃗i = (Ci(1), Ci(2), . . . , Ci(Li)) is the vector of WCET estimates for
different criticality levels

5.10.3 Scheduling in Mixed-Criticality Systems

Several approaches have been developed for mixed-criticality scheduling:

• Fixed-priority approaches

– Criticality-monotonic: Higher criticality tasks get higher priorities

– Audsley’s algorithm adapted for mixed criticality

– Period transformation to achieve criticality-monotonic scheduling

• EDF-based approaches

– EDF-VD: Uses virtual deadlines that are shortened for high-
criticality tasks

– EQDF: Incorporates elasticity in task parameters

• Mode change approaches

– Adaptive Mixed Criticality (AMC): Standard model with mode
changes

– Bailout protocols: Allow some low-criticality execution after mode
change

– Elastic scheduling: Adjust task parameters during mode changes
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5.10.4 Adaptive Mixed-Criticality (AMC)

AMC is a prominent approach for mixed-criticality scheduling:

• System starts in LO-criticality mode

• When a high-criticality task exceeds its LO-criticality WCET, the
system switches to HI-criticality mode

• In HI-criticality mode, low-criticality tasks are abandoned or executed
at reduced rates

• High-criticality tasks are guaranteed their HI-criticality WCET

AMC Schedulability Analysis

Schedulability analysis for AMC considers three scenarios:

1. LO-criticality mode: All tasks meet their deadlines using LO-criticality
WCETs

2. HI-criticality mode: High-criticality tasks meet their deadlines using
HI-criticality WCETs

3. Mode change: The transition from LO to HI criticality

RLO
i = Ci(LO) +

∑
j∈hp(i)

⌈
RLO

i

Tj

⌉
Cj(LO) (5.11)

RHI
i = Ci(HI) +

∑
j∈hpH(i)

⌈
RHI

i

Tj

⌉
Cj(HI) (5.12)

R∗
i = Ci(HI) +

∑
j∈hpH(i)

⌈
R∗

i

Tj

⌉
Cj(HI) +

∑
j∈hpL(i)

⌈
RLO

i

Tj

⌉
Cj(LO) (5.13)

where hpH(i) and hpL(i) are the sets of high and low criticality tasks
with higher priority than task i.

5.10.5 Multicore Mixed-Criticality

Mixed-criticality scheduling extends to multicore platforms:

• Partitioned approaches: Assign tasks to cores based on criticality

• Global approaches: Allow all tasks to execute on any core

• Semi-partitioned approaches: Allow some tasks (typically low-
criticality) to migrate

• Fluid scheduling models: Apply fairness principles to mixed-criticality
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5.10.6 Practical Considerations

Implementing mixed-criticality systems involves practical considerations:

• Certification: Meeting standards like DO-178C, ISO 26262

• Recovery strategies: How to return to normal operation after mode
changes

• Service degradation: Graceful degradation of low-criticality tasks

• Runtime monitoring: Detecting WCET violations and triggering
mode changes

• WCET estimation: Obtaining different WCET estimates for different
criticality levels

5.11 Conclusion

Real-time systems theory and practice continue to evolve to address the
challenges of modern computing platforms:

• Single-core foundations: The fundamental principles of scheduling,
response time analysis, and resource sharing protocols

• Model extensions: Release jitter, arbitrary deadlines, offsets, and
transactions to model complex real-world systems

• Multicore challenges: New scheduling paradigms, resource sharing
protocols, and analysis techniques

• Mixed-criticality systems: Integrating components with different
importance and certification requirements

The future of real-time systems research includes:

• Heterogeneous platforms: Combining different types of processors
and accelerators

• Time-sensitive networking: Extending real-time guarantees to
distributed systems

• Energy awareness: Balancing real-time requirements with energy
constraints

• Safety and security: Integrating real-time guarantees with safety
and security properties
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.1 Glossary of Terms
Busy period A time interval during which the processor is continuously

busy executing tasks of a certain priority or higher.

Criticality The importance of a task or component, often related to safety
certification requirements.

Deadline The time by which a task must complete its execution.

Feasibility The property that all tasks in a system can meet their deadlines.

Interference The delay experienced by a task due to the execution of
higher-priority tasks.

Jitter Variation in the timing of a periodic event, such as task release or
completion.

Laxity The slack time of a task, calculated as deadline minus remaining
execution time.

Optimality The property of a scheduling algorithm that it can schedule
any feasible task set.

Preemption The act of temporarily interrupting a task, with the intention
of resuming it later.

Priority inversion A situation where a high-priority task is blocked by a
lower-priority task.

Response time The time between the release of a task and its completion.

Schedulability The property that a particular scheduling algorithm can
schedule a task set.

Utilization The fraction of processor time required by a task, calculated as
execution time divided by period.

WCET Worst-Case Execution Time, the maximum time a task could take
to execute.

.2 Bibliography
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